
Classification and Summarization of Medical Abstracts

Paolo Caggiano - Davide Giardini

Contents

1 Introduction 1

2 Dataset 2

3 Classification 2
3.1 Text Pre-Processing 2
3.2 Feature Extraction 2
3.3 Feature Selection 3
3.4 Classification Algorithms 3
3.5 Performance measures 4
3.6 K Fold Cross Validation 4
3.7 Classification Results 4

4 Text Summarization 6
4.1 Graph Based Method 6
4.2 LSA 6
4.3 Evaluation 7
4.4 Summarization Results 7

5 Conclusions and Future Develop-
ments 7

Abstract

Biomedical and life sciences literature is one
of the biggest fields in term of number of aca-
demic publications. Its exponentially increasing
volume and interdisciplinary nature makes in-
formation retrieval tools essential in this field.
In this study, we analyze multiple combinations
of preprocessing, feature extraction and feature
selection techniques to tackle the problem of
Multi-Label Multi-Class (MLMC) classification
of medical abstracts. Secondly, we use two dif-
ferent extractive text summarization techniques
in order to create an overview of each document.
In both cases, we search for the best approach to
address the two tasks by evaluating the results
through appropriate measures.

1 Introduction

The historical extent of healthcare and its
constant evolution made medicine one of the

field with the greatest extent of academic lit-
erature. This large amount of medical text rep-
resents an important challenge for those who
seek to retrieve information from this type of
data, such medical doctors and researchers. Of-
ten, the screening phase in these jobs requires a
significant effort, where experts evaluate thou-
sand of articles to pinpoint relevant informa-
tion. Search engines specifically tailored for aca-
demic publications, like Google Scholar, have
already proven to be excellent methods for nav-
igating this large amount of text. Furthermore,
search engines developed precisely for medical
publications, like PubMed1, have also already
been developed and are widely used. Though,
the fact that biomedical literature often refers to
a large number of subdomains, still poses great
challenges for automatic classification systems.
Furthermore, since it is crucial for physicians
and researchers in medicine and biology to have
quick and efficient access to up-to-date infor-
mation according to their interests and needs,
methods must be found in order to enable users
to quickly assimilate and determine the content
of a document [1].
The rise of text classification and summariza-

tion tools has emerged as a possible solution to
navigate through this massive amount of fea-
tures. This paper delves into the integration
of these two text mining methods within the
framework of analyzing medical documents.
After a brief introduction to the dataset, in

Section 3 we tackle the problem of Multi-Class
Multi-Label (MCML) classification of medical
abstracts related to 5 different classes of patient
conditions. While doing this, we evaluate, with
the use of suitable measure, which combination
of Pre-Processing, Feature Extraction and Fea-
ture Selection techniques helps to achieve the
best results. More precisely, we investigate:

1https://pubmed.ncbi.nlm.nih.gov/

• Three different Pre-Processing tech-
niques.
i.e., Basic Preprocessing, Stopwords re-
moval and Lemmatization

• Four different Feature Extraction
techniques.
i.e., BoW, TF, tf-idf andWord Embeddings

• Two different Feature Selection tech-
niques.
i.e., a naive removal of rare words and Prin-
cipal Component Analysis

• Four different classificators.
i.e., Naive Bayes, Decision Trees, Random
Forest and Support Vector Machines

Then, we tackle the problem of text sum-
marization with two different techniques: one
graph-based approach and one based on Latent
Semantic Analysis. We evaluate the resulting
summaries in two ways: comparing them to the
title of the document, via the “Rouge” metrics,
and by assessing their abilities in performing the
previous task of text classification.
Finally, in section 5, we conclude our report.

2 Dataset

To perform our evaluation, we utilized the
dataset coming from a study devoted in eval-
uating unsupervised text classification meth-
ods[2]. The dataset, available on Github2, is
composed of 9445 observations describing 5 dif-
ferent classes of patient conditions :

1. Neoplasms

2. Digestive system diseases

3. Nervous system diseases

4. Cardiovascular diseases

5. General pathological conditions

Each observation of this dataset is composed
of the combination of the paper title and ab-
stract. This will later prove to be a challenge for
the summarization task, in which we will want
to separate the two in order to perform the sum-
marization on the abstract and the evaluation
on the title.
The main peculiarity of this dataset is that

each document can be part of one or many
classes, making this a Multi-Class Multi-Label
classification problem.

2https://github.com/sebischair/medical-abstracts-
tc-corpus

3 Classification

Document Classification is a fundamental
learning problem of many information man-
agement and retrieval tasks. The problem of
MCML classification may be solved as n inde-
pendent binary classification problems, where n
is the number of total classes, in our case five.
In this section, we are initially going to

introduce all Pre-Processing, Feature Extrac-
tion, Feature Selection, Classificators and Per-
formance measures we used. Then, in the “Re-
sult” subsection, we are firstly going to investi-
gate on the combinations of Pre-Processing and
Feature Extraction, and then apply Feature Se-
lection on the best one.

3.1 Text Pre-Processing

We are going to evaluate three different Pre-
Processing techniques:

1. Basic Preprocessing.
Refers to removing punctuation and other
non-alphanumeric characters, setting all
the words to lower case and tokenizing
them.

2. Stop-Words removal.
Refers to removing words that occur very
frequently and have little semantic content
(a, the, to, ..), and that are therefore use-
less to address the problem of classification.

3. Lemmatization.
Refers to the reduction of each token to its
lemma, i.e., the dictionary form of a word.

3.2 Feature Extraction

Feature Extraction is an essential step in
working with documents, since we have to trans-
form the data into a format with which a com-
puter can deal with. In our project we use four
different methods: BoW, TF, tf-idf and Word
embeddings.
“Bag of Words” (BoW) refers to simply assign-
ing the value 1 to a word if it is present in the
document, 0 otherwise.
The “Term-Frequency” (TF) weighting system
is based, as the name suggests, on the number
of times that a term t occurs in a document d.
The tf-idf weight of a term t in a document
d, instead, is the product of its “TF” weight
and its “idf” weight. The “Inverse Document
Frequency” (idf) of a term t is computed as

log
(

N
dft

)
, where the “Document Frequency”

(dft) is the number of documents that contain
2

the term t. In other words, the tf-idf weight
of a term t in a document d increases with the
number of occurrences of the term within the
document, and with the rarity of the term in
the collection. For example, medical texts often
contain common terms that appear frequently
but may not carry much discriminative power
(e.g., common medical terms like “patient” or
“treatment”). The tf-idf procedure guarantees
that such terms have a small weight, contrary
to relatively rare but essential terms for distin-
guishing between classes.
Lastly, word embeddings are a type of word
representation that allows words with similar
meaning to have a similar representation. In
word embeddings, individual words are repre-
sented as real-valued vectors in a predefined vec-
tor space: each word is mapped to one vector
and the vector values are learned in a way that
resembles a neural network. In this paper, we
are going to compute the vector representations
of each word in two ways: training a word2vec
model over our dataset and utilizing pre-trained
word embeddings. The second approach, more
precisely, refers to the utilization of embeddings
trained in a previous work [3], and stored on
the researcher’s website3. These word vectors
were induced from a combination of texts from
PubMed and PMC4. The main idea is that the
training of the vectors over a larger amount of
documents of the same type will result in a bet-
ter representation of the words, and therefore a
better classification.

3.3 Feature Selection

Feature selection is one of the most frequent
and important techniques in data preprocess-
ing, and has become an indispensable compo-
nent of the machine learning process. It refers
to the process of detecting relevant features
and removing irrelevant, redundant, or noisy
data. This process speeds up data mining al-
gorithms, improves predictive accuracy, and in-
creases comprehensibility. In our project we use
two techniques: a “naive” approach and Princi-
pal Component Analysis. In the first case, we
simply discard the words that are rare, in order
to reduce the number of features. We define as
“rare” the words that occur only once in the en-
tire collection of documents. Of our vocabulary
of 26447 tokens (not including stopwords), 8228
of them is mentioned only once. This means

3bio.nlplab.org
4https://www.ncbi.nlm.nih.gov/pmc/

that 8228 variables in the BoW, TF and tf-Idf
matrices are composed only of zeros, except for
only one element. In the second case, we use the
Principal Component Analysis to reduce the di-
mensionality of the data. The goal of PCA is to
find new, simpler variables that are not directly
observed, but are linear functions of those in the
original dataset. These new dimensions, called
principal components (PCs), are identified so
as to explain most of the variance-covariance
structure of the observed variables, in an effort
to retain the maximum amount of information
of the original data. In other words, given m
as the document dimension and k as number of
components, we aim to select the k components,
where k < m, that explain most of the variabil-
ity in the data.
Feature Selection techniques are only going to
be applied on BoW, TF, and tf-idf matrices.
In fact, since representation matrices coming
from word embeddings will already have a much
lower dimensionality, we are not interested in
applying these types of techniques on them.
More precisely, as already mentioned, they are
going to be applied only on the best combina-
tion of Pre-Processing and Feature Extraction.

3.4 Classification Algorithms

In our research we use four classification al-
gorithms.

• Decision Tree
A decision tree is a non-parametric super-
vised learning algorithm for classification
and regression tasks. It has a hierarchi-
cal tree structure consisting of a root node,
branches, internal nodes, and leaf nodes.

• Random Forest
Random forest consists of a large number
of individual decision trees that operate to-
gether. Each individual tree in the random
forest outputs a class prediction. The class
with the most votes becomes our model’s
prediction.

• Naive Bayes
Naive Bayes classifiers are a family of sim-
ple “probabilistic classifiers” based on ap-
plying Bayes’ theorem with strong (naive)
independence assumptions between the fea-
tures.

• Support Vector Machine
SVM classifies data by finding the best hy-
perplane that separates all data points of

3

one class from those of the other class,
where “best” is defined in terms of largest
margin between the two classes.

Even though most of the studies on the mat-
ter found that the SVM algorithm outperforms
many other algorithms, followed by NB, RF,
DT, RB, BN, and kNN[4], Support Vector Ma-
chines can be slow due to their quadratic time
complexity in relation to the number of data
points, making training time-intensive, espe-
cially for large datasets. For this reason, we
are not going to evaluate the performances of
SVMs on all the combinations of Preprocess-
ing and Feature Extraction, but only on word
embeddings and matrices on which Feature Se-
lection was applied.

3.5 Performance measures

To evaluate the performances of the four al-
gorithms, we take into account different tools
and measures.
In general, in classification problems, a very

useful tool for performance evaluation is the
confusion matrix, since most of the metrics can
be obtained analytically from it. This matrix
is made up of rows and columns where the real
and expected classes are indicated; in this way
it is possible to evaluate the four combinations
deriving from the classification, i.e: True Nega-
tives, False Positives, False Negatives and True
Positives.
From the Confusion Matrix, we can compute

three measures: Recall, Precision and F-score.
Recall is equal to:

Recall =
TP

P
, (1)

In our case it refers to the percentage of the
documents of each class that are correctly iden-
tified
Precision is equal to:

Precision =
TP

TP + FP
; (2)

it represents the fraction of documents which
are classified in one class and that result to be
effectively of that class.

From these two metrics, we can compute a
third metrics: the F-score:

F − score = 2× Precision×Recall

Precision+Recall
; (3)

in other words, it is an harmonic mean between
Precision and Recall. Since we are in a MCML
classification problem, we can compute the over-
all F-score in two ways: with micro and macro
averaging[4]. In micro averaging, we compute
the F-score utilizing micro-averaged precision
and recall. Micro-averaged precision and recall
are computed using as TP, FP, and FN the sum
of the TP, FP and FN obtained for each clas-
sification. Macro averaging, instead, consists in
simply computing the arithmetic mean of all the
F-1 scores for the different classes.

Though, since micro-averaging is more effec-
tive when, as in our case, the datasets vary in
size[5], we are going to rely more strongly on
this measure.

3.6 K Fold Cross Validation

In order to get a more effective estimate of
the classifier’s performances we will use for all
of the analysis the K Fold cross validation. This
method consists in dividing the data into k sub-
sets, and then repeating k times the holdout
method (i.e., splitting the data into a training
set and a test set), such that each time one of
the k subsets is used as the test set and the other
k-1 subsets are put together to form a training
set. The error estimation is averaged over all k
trials to get total effectiveness of our model. In
our case, we decide to use the five folds cross
validation (k=5).

3.7 Classification Results

We firstly applied the 5-Fold Cross Validation
to the 6 combination of PreProcessing (Stop-
Words Removal and Lemmatization) and Fea-
ture Extraction (BoW, TF and tf-idf). Each
of them with the 3 classifiers. The results are
shown in Figure 1.

Figure 1: Classification Results

4

As we can clearly see from the image, Ran-
dom Forest classifiers achieve the best results
in all of the combinations, followed by Decision
Trees and, with a relevant gap, by Naive Bayes.
This result is in contrast to what researchers
have found in [4], where Naive Bayes is regarded
as the second best classifier after SVM. For what
concerns the Pre Processing techniques, instead,
the gap is not wide at all, but StopWords re-
moval without lemmatization seems to achieve
better results in more combinations. Lastly, TF
seems to be the best Feature Extraction tech-
nique among the three. Once again, the gap is
not large, but the classifications done with TF
are those that achieve the best results.
For this reason, we decide to take as the

“best” combination the one with no Lemmati-
zation and computed via the TF matrix, as it is
formed by the best overall Pre Processing and
Feature Extraction techniques, and it contains
the best classification: RF with 67.9%. We are
now going to apply Feature Selection on top of
this combination. The lower number of features
will also enable us to test SVMs. The perfor-
mance of naive Feature Selection, both in term
of classification and execution time, are com-
pared to the performance of the best combina-
tion without Feature Selection in Figure 2.

Figure 2: Feature Selection Results

It is important to notice that, since we ap-
proach the problem of MCML classification as
5 different binary classifications, the execution
time reported is a sum of the execution time of
each classifier over the 5 binary classifications.
As it can be seen, not only this simple Feature
Selection reduces the time required for execu-
tion, but it also improves the performances of
all the classifiers. Here the Random Forest clas-
sifier achieves the best result yet (68.3%).
SVMs, instead, achieved on the dataset with

Feature Selection a micro-averaged F-score of
64.7%. This, combined with an execution time
of 2 hours and 10 minutes, makes this classifier
hard to recommend, at least with this type of
Feature Extraction.
Finally, for what regards Principal Compo-

nent Analysis, we achieved terrible results. Fur-
thermore, the computation of Principal Compo-
nents, even if advantaged us in the classification
process, was quite time consuming. Both these
factors make PCA an hard technique to recom-
mend in this type or work.

Let’s now focus on Word Embeddings.
In Figure 3 we show the classification results
of Classification done with word embeddings as
features, where the word rempresentations have
been computed with a word2vec model over
the dataset’s document. More specifically, the
model was trained with a 100 vector size and a
window of 7.

Figure 3: W2V Results

The results obtained fall very short compared
to the previous ones. With some tweaks to
the parameters (vector size and window size),
though, we were able to achieve better results.
In Table 1 we compare the micro-averaged F1-
score for Random Forest over 9 different combi-
nations of vector and window size:

Windowsize︷ ︸︸ ︷
5 7 10

V
ec
to
r
si
z
e

︷︸
︸︷ 50 58.6 59.6 59.8

100 59.1 59.8 60.6

200 59.6 60.3 61.4

Table 1: W2V results with different parameters

As we can see, an increase in vector size and
window size helps to achieve better results: the
best result achieved by the RF classifier is with
a window size of 10 and a vector size of 200
(61.4%). A further increase in classification per-
formances is obtained when applying, to this

5

exact model, SVMs: 63.3%. Still, these results
remain way lower than the one achieved with a
TF matrix with Feature Selection (68.3%).
A very different outcome is instead achieved

when applying pretrained word embeddings. In
figure 4 we compare the result achieved with
this techniques with those achieved by the best
combination so far (Stopwords removal, TF fea-
ture extraction and naive Feature Selection).

Figure 4: pretrained W2V results

While Decision Trees and Random Forest
classifiers drop in performances, the opposite is
true for Naive Bayes and SVMs. With SVMs, in
fact, we now achieve the best classification re-
sult in term of micro averaged F-score: 71.1%.
Furthermore, the fact that the pretrained em-
beddings are of size 200, means that the clas-
sifiers have to deal with way less features. In
other words, not only pretrained embeddings
helped us to achieve the best classification re-
sult, but are also way less computationally ex-
pensive: all of the classifiers required less then
a minute to run, including SVMs.

4 Text Summarization

Summarization helps to shorten the time
needed for reading, speeds up the search for in-
formation and helps to get the most amount of
information on one topic. The central object of
computerized text summarization is decreasing
the reference text into a smaller version main-
taining its knowledge alongside with its mean-
ing [6].
There are two type of summarization: ex-

tractive and abstractive. In extractive summa-
rization the summary is created from impor-
tant phrases or sentences selected from the in-
put text. Abstractive summarization, instead,
expresses the ideas in the source documents
using different words. In our project we fo-
cus on extractive techniques. More precisely,
we are going to use two approaches: Graph-
Based Method(Indicator Representation Ap-
proach) and Latent Semantic Analysis (Topic
Representation Approach).

4.1 Graph Based Method

Graph Based methods represent the docu-
ment as a connected graph where vertices are
the sentences, and edges reflect their similarity.
With this representation, we are able to figure
out the important sentences to be included in
the summary based on their connection with the
other vertices of the graph.
After computing the graph representation

utilizing the similarity matrix between sen-
tences, we are going to apply the “Page Rank”
algorithm to retrieve the scores of each sen-
tences. PageRank is an algorithm utilized by
Google that attaches a score to Web pages on
the basis of the Web connectivity[7]. PageRank
works by counting the number and quality of
links to a page to determine a rough estimate
of how important the website is. The underly-
ing assumption is that more important websites
(in our case sentences) are likely to receive more
links from other websites.

4.2 LSA

Latent Semantic Analysis is an algebraic-
statistical method that extracts hidden seman-
tic structures of words and sentences. It is an
unsupervised approach that does not need any
training or external knowledge. LSA is based
on the distributional hypothesis: the seman-
tics of two words will be similar if they tend
to occur in similar contexts. LSA computes
how frequently words occur in the documents
and the whole corpus, and assumes that sim-
ilar documents will contain approximately the
same distribution of word frequencies for cer-
tain words. In this way, though, syntactic and
semantic information is ignored and each doc-
ument is treated as a bag of words. Singular
Value Decomposition, an algebraic method, is
used to decompose the document-term matrix
into the product of three matrices U , Σ and
V T . In this way, LSA will consider each sin-
gular value of the decomposition as a potential
topic found in the documents.
Even though LSA performs topic-modelling, the
resulting topics can be used for text summa-
rization. If we apply SVD to a matrix A in
which each entry aij corresponds to the weight
of word i in sentence j (were weights are cal-
culated with tf-idf), then we can compute the
product between Σ and V T to compute the ma-
trix D, that combines the topic weights and the
sentence representation to indicate to what ex-
tent the sentence conveys the topic, with dij

6

indicating the weight for topic i in sentence j.
The assumption is that sentences covering var-
ious topics are ideal contenders for summaries.
The weight of the sentence sj is computed as:

g(sj) =

√√√√ m∑
j=1

di2j (4)

4.3 Evaluation

For what regards the results evaluation, we
focus our attention on the ROUGE metric.
ROUGE stands for Recall-Oriented Understudy
for Gisting Evaluation. ROUGE is a measure to
automatically determine the quality of a sum-
mary by comparing it to other (ideal) sum-
maries created by humans [8]. However, our
dataset does not provide the latter type of ref-
erence. To overcome this issue, we use docu-
ment’s title as reference. In other words, we
firstly separate, for each observation in our data,
the title from the abstract. We do this by us-
ing PubMed’s API: we search for a publication
whose title contains the first words of our obser-
vation, we retrieve its title, remove it from the
observation and store it in a separate variable.
Then, we compute the summarization only on
the abstract part of the observation, and com-
pare it to the title via the ROUGE metric.
There are different types of ROUGE:

• Rouge-N
It’s computed as the number of common n-
grams between the candidate and reference
summaries (denoted as p), and the total
number of n -grams present in the reference
summary (denoted as q). Mathematically:

Rouge− n =
p

q

• Rouge-L
It refers to the longest common subse-
quence between two texts. All n-grams
must be consecutive.

As a second method for evaluating the sum-
maries, we are going to determine how they per-
form in the classification task. More precisely,
we are going to use the pretrained word embed-
dings to perform feature extraction over the two
summaries (Graph based and LSA). Then, we

are going to compare their classification abili-
ties with the same classification done with the
original text, and with a random summary. The
main idea behind this type of measure is that,
if a summary is done right, it will retain most
of the important and discriminative information
of the original text. If this is true, than a good
summary should perform better in a classifica-
tion task like the one we described before, at
least compared to a random summary.

4.4 Summarization Results

From the resulting metrics displayed in Fig-
ure 5 we can clearly see that the Graph-based
summarization performs overall better than the
LSA-based summarization.

Figure 5: Summarization Results

This is also reflected in their classification
ability. As we have seen in the classification re-
sults, the micro averaged F-score for the whole
document was 71.1% (with SVM), while the
same metric is of 63.3% for the random sum-
mary. If we apply SVM to the Features ex-
tracted from the Graph-based, instead, the mi-
cro averaged F-score increses to 64.0%. This
demonstrates an higher ability of these types of
summaries to retain information useful for dis-
criminating between the five classes. The same
cannot be said for the LSA-based summaries,
that achieve a score of 62.0%, lower than the
random summaries.

5 Conclusions and Future
Developments

In this report, we analyzed different tech-
niques to perform Multi Class Multi Label clas-
sification and summarization on medical ab-
stracts.
In the first part, we focused on classification.
We evaluated three different Pre-Processing
techniques, four different Feature Extraction
techniques, Two Feature Selection techniques
and four classifiers. Our results showed that,
when working with Feature Extraction tech-
niques different from Word embeddings, stop-
words removal without Lemmatization, a TF

7

based representation matrix and a Random For-
est classifier tend to achieve the best result. The
combination of these three techniques, resulted
in a 67.9% micro averaged F-score. Further-
more, removing “rare” words (i.e., those that
appear only once in the whole collection) results
in a boost both in classification performances
(68.3%) and in time required for the compu-
tation. PCA, instead, did not perform as ex-
pected.
When dealing with Word Embeddings, we
demonstrated that, if we would like to train
them from scratch, then lemmatizing the doc-
uments and increasing both the window and
vector size of the model will lead to better re-
sults. Though, the most crucial factor with
word embeddings seems to be the raw amount
of data they are trained with. Using the pre-
trained word embeddings, in fact, resulted in an
overall increase in performances, and resulted in
the best classification performances: 71.1% with
SVM.
In general, for what regards the classifier, we
can say that Random Forest are the way-to-go
if we use a feature extraction technique that is
different from word embeddings, like BoW, TF
and tf-idf. In fact, in this case, SVMs are both
worse classifiers and way more time consuming.
With word embeddings, instead, SVMs give the
best result, and their performance inefficiency is
solved by the lower number of dimensions that
the embeddings require.
In the second part of the report, we focused

instead on text summarization. We computed
the summaries with two different techniques: a
graph-based model and an LSA-based model.
We then evaluated the two techniques with the
help of the rouge metrics, and by their per-
formances in the classification task. From our
result, the graph-based summarization showed
to be an overall better technique. In fact, it
achieved higher rouge scores, and demonstrated
an higher ability to retain information useful for
discriminating between the five classes.
In this paper we wanted to focus on tra-

ditional classification and summarization tech-
niques, i.e., not relying on Large Language
Models. Though, in future works, it would be
interesting to evaluate the performances of clas-
sification based on contextualized word embed-
dings and abstractive summarization. In partic-
ular, BERT models that have been fine-tuned
over health records, like Med-BERT[9], would
probably help to achieve great results.

References

[1] Stergos Afantenos, Vangelis Karkaletsis,
and Panagiotis Stamatopoulos. “Summa-
rization from medical documents: a sur-
vey”. In: Artificial intelligence in medicine
33.2 (2005), pp. 157–177.

[2] Tim Schopf, Daniel Braun, and Flo-
rian Matthes. “Evaluating unsupervised
text classification: zero-shot and similarity-
based approaches”. In: arXiv preprint
arXiv:2211.16285 (2022).

[3] SPFGH Moen and Tapio Salakoski2 Sophia
Ananiadou. “Distributional semantics re-
sources for biomedical text processing”. In:
Proceedings of LBM (2013), pp. 39–44.

[4] Ghulam Mujtaba et al. “Clinical text clas-
sification research trends: systematic lit-
erature review and open issues”. In: Ex-
pert systems with applications 116 (2019),
pp. 494–520.

[5] Marina Sokolova and Guy Lapalme. “A
systematic analysis of performance mea-
sures for classification tasks”. In: Informa-
tion processing & management 45.4 (2009),
pp. 427–437.

[6] Laith Abualigah et al. “Text summariza-
tion: a brief review”. In: Recent Advances
in NLP: the case of Arabic language (2020),
pp. 1–15.

[7] Monica Bianchini, Marco Gori, and Franco
Scarselli. “Inside pagerank”. In: ACM
Transactions on Internet Technology
(TOIT) 5.1 (2005), pp. 92–128.

[8] Chin-Yew Lin. “Rouge: A package for au-
tomatic evaluation of summaries”. In: Text
summarization branches out. 2004, pp. 74–
81.

[9] Laila Rasmy et al. “Med-BERT: pretrained
contextualized embeddings on large-scale
structured electronic health records for dis-
ease prediction”. In: NPJ digital medicine
4.1 (2021), p. 86.

8

	Introduction
	Dataset
	Classification
	Text Pre-Processing
	Feature Extraction
	Feature Selection
	Classification Algorithms
	Performance measures
	K Fold Cross Validation
	Classification Results

	Text Summarization
	Graph Based Method
	LSA
	Evaluation
	Summarization Results

	Conclusions and Future Developments

